Block isolation with imc CRONOS*flex* (CRFX) who benefits?

Main use cases:

• UNI-4:	in conjunction with its well-known additional channel-wise individual isolation of voltage channels
• UNI2-8, DCB2-8, BR2-4:	allowing them to increasingly compete with fully-isolated bridge amplifiers
• ISO2-8:	with optional global sensor supply, which will now generally be isolated
• HRENC:	with their noise sensitive and delicate pulse signals
• ICPU2-8:	ICP current sources, that particularly benefit from ground loop suppression

Unique features of CRFX:

- Flagship series of imc CRONOS platform
- Block isolation
- 24 Bit high resolution (Floating Point output format)

Isolation with imc CRONOS*flex* (CRFX)

Isolation with imc CRONOSflex (CRFX) Summary

Imc

imc CRONOSflex LV3-8, BR2-4, ICPU2-8, HRENC-4

UNI-4 vs. UNI2-8 and CRFX block isolation

- UNI-4 has individually isolated voltage channels
- Also isolated against the supply unit as a whole
- This is an additional degree of flexibility compared to UNI2-8
- Sensor supply and bridge circuits are NOT individually isolated
- This neutralizes individual isolation in the case of bridge mode (1) vs. (4)
- CRFX features "block isolation" of the entire front end as an additional benefit, extending beyond the properties of CRC, C-SERIES, SPARTAN
- 6 This is not quite as comprehensive as (6) – but often *well sufficient*!

(1)

3

