

imc Meßsysteme GmbH

Isolation with imc CRONOS*flex*

Isolation with imc CRONOS*flex*

Characterizing "isolation": Individual vs. block isolation

UNI-4:	most flexible (individually isolated main amps)
UNI2-8 :	competing with isolated bridge amps
ISO2-8:	optional sensor supply
HRENC, ICPU-8:	benefit from ground loop suppression

Review of Specs (TD) Summary

Isolation

What does isolation refer to?

Galvanic isolation

- High impedance (GΩ range)
- · Can be checked with handheld multimeter instrument

Block isolation

- Isolation of entire functional blocks
- Across multiple channels
- Especially: isolation with respect to:

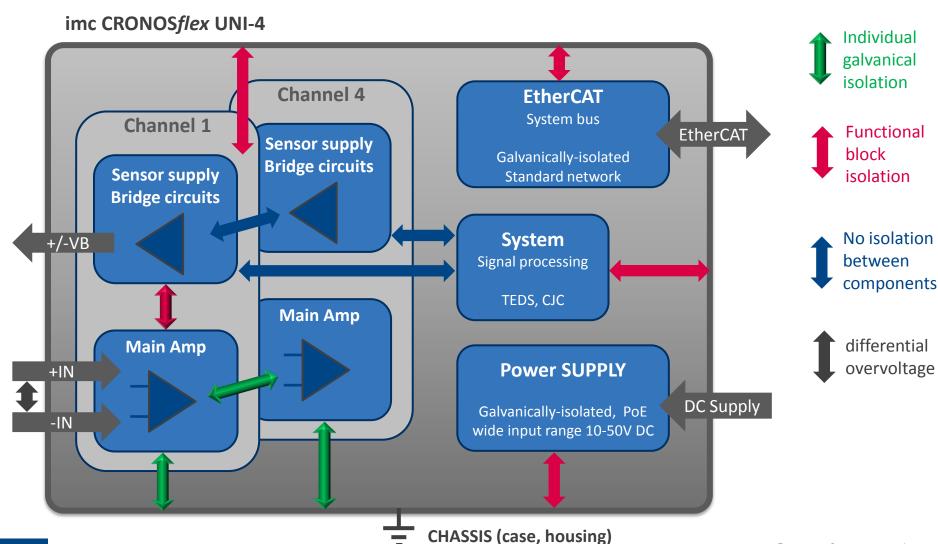
Case / CHASSIS / GND / Power supply

Individual channel-wise isolation

• Channels mutually isolated

Decoupled channels

• Nonreactive, independently configurable, decoupled in events of error or output short circuit, etc.


Overvoltage protection

- Overvoltage on measurement inputs
- Differential mode (instead of common mode)
- Not to be confused with "Isolation voltage"
- Not to be confused with Common mode noise rejection ratio (CMRR, IMR)

Isolation UNI-4

imc

CRFX/UNI-4 module components and levels of isolation

Isolation with UNI-4

UNI-4 module for CRFX: components and levels of isolation - Overview

Main amplifier

- Individual galvanic isolation for voltage and thermocouple mode
- When used in bridge mode: "neutralized" block isolation of sensor supply and bridge circuitry applies!

Sensor supply and bridge mode

- TD specs: declared as "Block isolation"
- Functional block isolation to CHASSIS (case) for entire 4-channel circuitry as a unit including bridge circuits (half/quarter bridge, shunt calibration etc.)
- Sensor / bridge supply with decoupled and individual settings (2.5V..15V) but no individual isolation!

System functions

- Functional block isolation to CHASSIS (case)
- Hidden internal functionalities
- TC cold junction compensation, TEDS interface, signal processing

Power supply

- Isolated power supply of module, wide range DC input, PoE capabilities
- Avoiding ground loops in wide area distributed setups

EtherCAT

- CRFX system bus, inherently isolated standard network technology
- Secure signal integrity and ground loops in wide area distributed setups

Isolation for CRFX-UNI-4

In detail: main voltage amplifier

• Functions

- $\circ\,$ Main signal path for voltage and thermocouple mode
- Individual galvanic isolation
- $\circ\;$ Fully isolated design with individual ADCs and isolated data couplers
- Rating
 - $\,\circ\,$ Explicitly suited for high common mode levels: 60V rated / 300V tested
 - Moderate 60 V rating mainly for reasons of formal certification issues (human safety)
- Applications
 - $\circ\,$ Thermocouples mounted with galvanic connection to elevated voltage levels
 - o Differential 20 mA current via external shunt plug (ACC/DSUB-I2): fully isolated!
 - Once bridge mode is involved and/or extended input circuitry options used: refer to: block isolation of sensor supply and bridge circuitry

In detail: sensor supply and bridge mode

- Hardware design
 - $\circ\,$ Sensor supply and all extended bridge circuitry: common internal supply and reference
 - No individual isolation channel-by channel
 - But: common and global block isolation to CHASSIS (case) for entire 4-channel circuitry
- Bridge supply "-VB1" .. "-VB4" interconnected to same potential, but isolated from
 - $\circ\,$ CHASSIS, case
 - $\circ~$ Protective earth, PE, wall adapter GND
 - External machinery, metal structures and installations
- "Isolation" vs. "Decoupling":
 - Sensor / bridge supply allow channel-wise individual settings (2.5V..15V)
 - $\circ~$ Completely decoupled in case of failure / short circuit
- Block isolation applies to all extended input options:
 - Half/quarter bridge
 - $\circ~\mbox{Shunt calibration}$
 - $\circ~$ Single ended voltage mode
 - o Single ended 20 mA current input (internal shunt, return path to internal GND)
 - $\circ~$ RTD / PT100 with block isolated reference current sources

Data sheet: Modes - individually isolated vs. "non isolated" with block isolation

Measure	ment modes DSUB		ACC/DSUB(M)-UNI2 for all modes
isolated r	measurement modes:	voltage measurement (differential)	
	Individual	current measurement	with Shunt-plug (ACC/DSUB(M)-I2)
	galvanical isolation	thermocouple	
non-isola	ted measurement	voltage measurement (single-end)	
modes:		current measurement	with internal Shunt
	Functional	bridge-sensor	
	block isolation	strain gauges	
		PT100/PT1000	
\leftrightarrow	No isolation between channels	(3- and 4-wire connection) current fed sensors (IEPE/ICP)	ACC/DSUB-ICP2, ACC/DSUB-ICP-BNC

9

TD: Definition of "individually-isolated" vs. "non-isolated" with block isolation

General		
Parameter	Value	Remarks
Isolation of voltage channels Individual galvanical isolation	channel-wise galvanically-isolated	voltage channels isolated against each other and against system ground (housing, CHASSIS, PE), as well as against common reference and all bridge excitation voltages "-VB"
		Isolation with IEPE/ICP plug: depends on plug type
Bridge excitation voltage isolation	not channel-wise isolated	isolated against additional electronics (all sensor power supplies, bridge and input
Functional block isolation		wiring, TEDS, etc.) with common reference ground "–VB"
No isolation between channels		Block-isolated against system ground (housing, CHASSIS, PE)
Max common mode voltage isolated mode	±60 V	against internal reference ground "–VB", against system ground (housing, CHASSIS, PE)
tested:	300 V (10 sec.)	
Max common mode voltage non-isolated mode	±10 V	against internal reference ground "–VB" Also for "non-isolated" mode, there is an
		additional global block-isolation of the entire internal measurement electronics from the housing (CHASSIS,@E) c Meßsyster

28.10.2014

New TDs: Specs of block isolation

Block isolation		
Parameter	Value	Remarks
Block isolation	60 V	all internal electronics isolated from the housing (CHASSIS, PE) Exception: additional individual isolated voltage channels
Isolation impedance	500 kΩ 1 nF	
Internal reference ground	-VB, GND, TEDS_GND	all channels with one common, galvanically connected reference ground
External reference ground	CHASSIS, metal housing	internal electronics as an entity, galvanically isolated from housing

Note

Block isolation for improved suppression of ground loops and related interference. Does not constitute channelwise individual isolation. Not rated nor intended for safety of equipment and personnel.

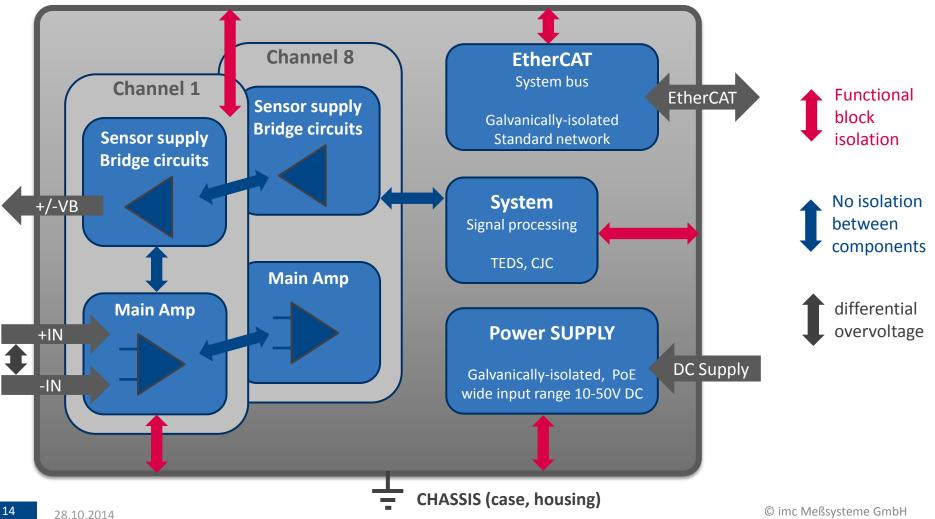
TD: Protection against differential overvoltage

Overvoltage protection (inputs +IN, -IN)		differential input voltage (continuous) human body model
Differential overvoltage	•	test pulse 6 with max250 V R _i =30 Ω, t _d =300 μs, t _r <60 μs

Data sheet: Power supply and EtherCAT system bus

Power supply of the module		
Parameter	Value	Remarks
Input supply voltage	10 V to 50 V DC	
Power consumption	10 W	10 V to 50 V DC
Isolation	60 V	nominal isolation specification of the supply input
Power-over EtherCAT (PoE)	42 V to 50 V DC	supply via EtherCAT network cable

Functional block isolation


Terminal connections of the module		
Parameter	Value	Remarks
EtherCAT connection	2x RJ45	system bus for distributed imc CRONOS <i>flex</i> components
Input supply plug (female)	LEMO.EGE.1B.302	multicoded 2 notches for optional individually power supply
Module connector	2x 20 pin	direct connection of modules (click) supply and system bus

Isolation UNI-8

CRFX/UNI-8 module components and levels of isolation

imc CRONOSflex UNI-8

Isolation with UNI2-8

UNI-8 module for CRFX: components and levels of isolation

Main amplifier

- No individual galvanic isolation (unlike UNI-4)
- Functional block isolation for complete input including sensor supply

Sensor supply and bridge mode

- TD specs: declared as "Block isolation"
- Functional block isolation to CHASSIS (case) for entire 8-channel circuitry of analog front end
- No individual settings for sensor / bridge supply (2.5V..24V) common global choice!

System functions

- Functional block isolation for TC cold junction compensation, TEDS interface, signal processing
- Hidden internal functionalities: uniform concept for most CRFX amplifiers

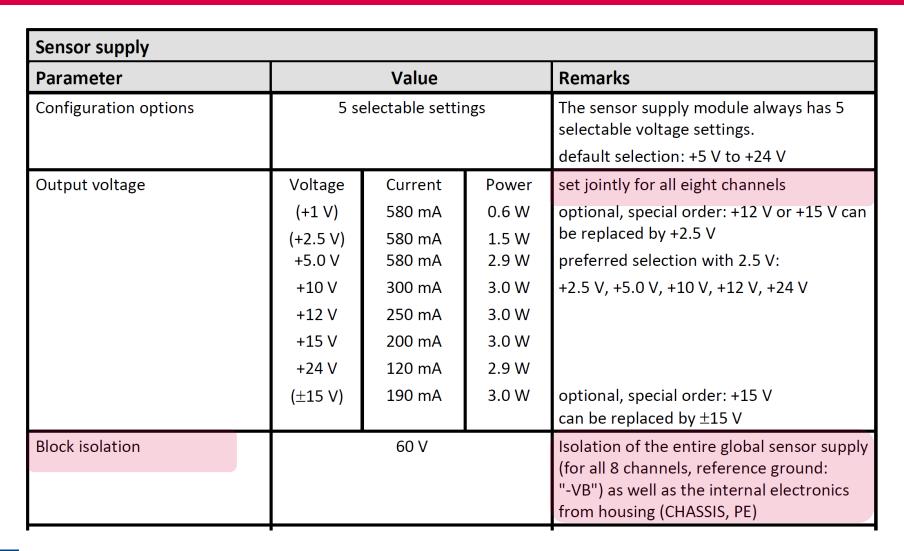
Power supply

- Isolated power supply of module, wide range DC input, PoE capabilities
- Uniform concept for all CRFX amplifiers: suited for distributed topologies
- Avoiding ground loops in wide area distributed setups

EtherCAT

- CRFX system bus, inherently isolated standard network technology
- Uniform concept for all CRFX amplifiers: suited for distributed topologies
- Secure signal integrity and ground loops in wide area distributed setups

New TDs: explicitly specifying block isolation

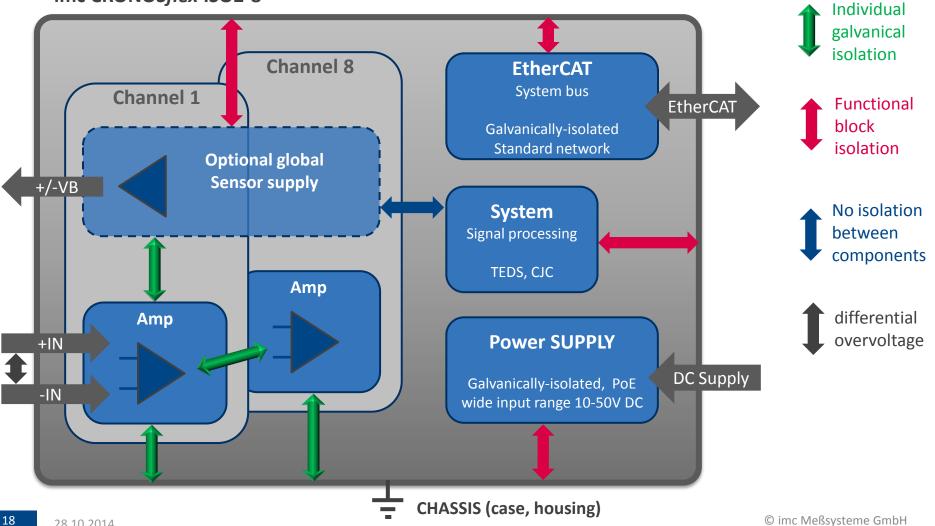

Block isolation		
Parameter	Value	Remarks
Block isolation	60 V	all internal electronics isolated from the housing (CHASSIS, PE)
Isolation impedance	500 kΩ 1 nF	
Internal reference ground	-VB, GND, TEDS_GND	all channels with one common, galvanically connected reference ground
External reference ground	CHASSIS, metal housing	internal electronics as an entity, galvanically isolated from housing

Note

Block isolation for improved suppression of ground loops and related interference. Does not constitute channelwise individual isolation. Not rated nor intended for safety of equipment and personnel.

Devices or modules purchased before ca. 2012 do not feature block isolation.

New TDs: global sensor supply and front-end as a common block


Imc

Isolation ISO2-8

CRFX/ISO2-8 module components and levels of isolation

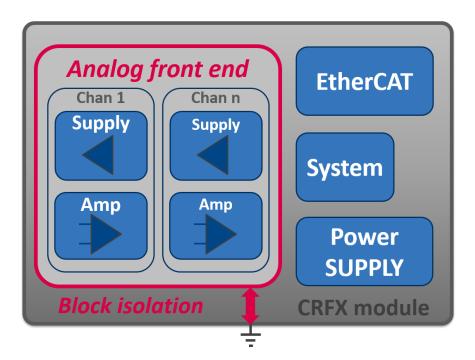
imc CRONOSflex ISO2-8

Isolation with ISO2-8

ISO2-8 module for CRFX: components and levels of isolation

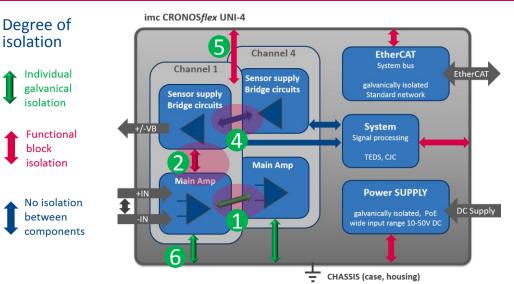
• Functions

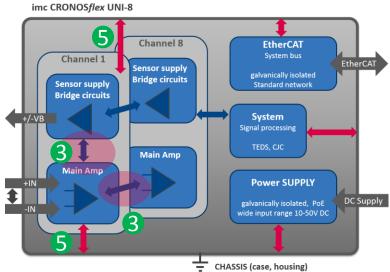
- $\circ\;$ Full individual galvanic isolation for voltage and thermocouple mode
- $\circ\,$ Thermocouples mounted with galvanic connection to elevated voltage levels
- Differential 20 mA current via external shunt plug (ACC/DSUB-I4): fully isolated!
- RTD / PT100 with block isolated reference current sources, only
 - \rightarrow no major restriction: Unlike TC, any RTD will always be mounted isolated to substrate (2/4 wires)
- Rating
 - $\,\circ\,$ Explicitly suited for high common mode levels: 60V rated / 300V tested
 - Moderate 60 V rating mainly for reasons of formal certification issues (human safety)
- Optional sensor supply
 - TD specs: declared as "Block isolation"
 - $\circ~$ Block isolation to CHASSIS (case) for entire sensor supply unit!
 - Global sensor supply: no individual settings, common global choice!
 - Common pin on DSUB-15: used by 4 channels per plug

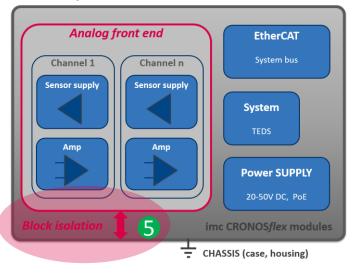

Block-Isolation with imc CRONOS*flex* (CRFX)

History of product development and specs

Block isolation

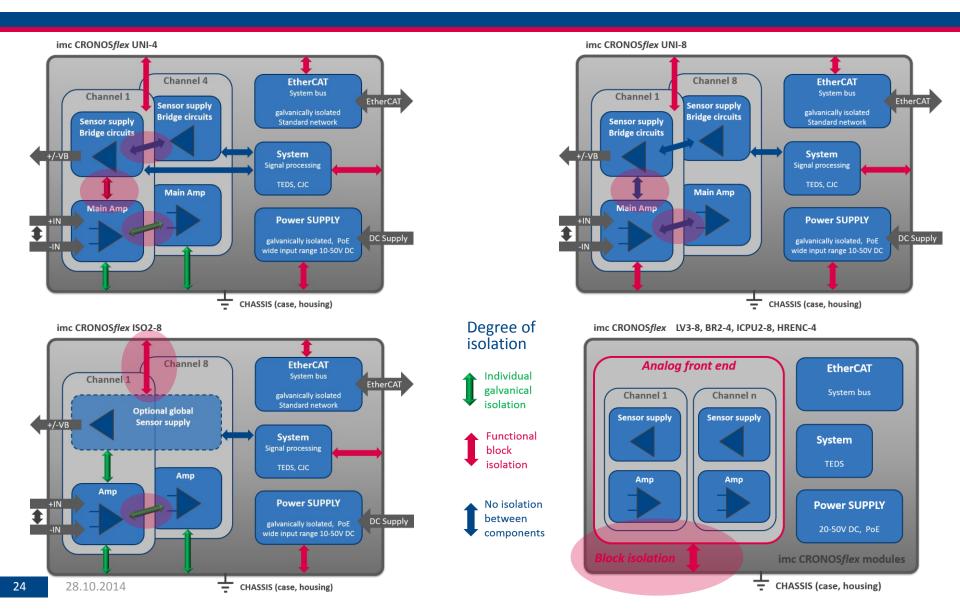

- Common global isolation of analog front end and system functions
- For all current CRFX amplifiers (*since 2012*) even the non-isolated types (UNI2-8, DCB2-8, LV3-8, BR2-4, HRENC-4) !
- Initially (before 2012), block isolation was NOT activated
- TD specs had not been updated after 2012: *still formally declared as "non-isolated"*
- Because:
 - Not entirely independent, yet sufficient for ground loop suppression
 - Requires careful attention and understanding
 - $\circ~$ Not fully "fire and forget"
 - $\circ~$ Aiming to avoid confusion
 - $\circ\,$ Historical evolution of product development


• Now (2014): block isolation fully supported ! fully documented detailed specs (TD)


Isolation with imc CRONOSflex (CRFX)

Summary and conclusion for UNI-4 and UNI2-8

imc CRONOSflex LV3-8, BR2-4, ICPU2-8, HRENC-4


UNI-4 vs. UNI2-8 and CRFX block isolation

- UNI-4 has individually-isolated voltage channels
- Also isolated against the supply unit as a whole
- This is an additional degree of flexibility compared to UNI2-8
- Sensor supply and bridge circuits are NOT individually isolated
- This neutralizes individual isolation in the case of bridge mode (1) vs. (4)
- CRFX features "*block isolation*" of the entire front end as an additional benefit, extending beyond the properties of CRC, C-SERIES, SPARTAN
- This is not quite as comprehensive as (6) but often well sufficient!

imc CRONOS*flex* UNI-8

Isolation with imc CRONOS*flex* (CRFX)

Overview

IMC

Thank you for your attention.

See you at: www.imc-berlin.com

